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Abstract

The dependence of the diffusion coefficient, D, of polymer systems on the Dynamically Accessible Volume (DAV) was calculated in the

framework of the Bond Fluctuation Model. The quadratic relationship between dynamically accessible volume and diffusion coefficient, which

has been observed for some other models, has been confirmed for high values of DAV, whereas smaller diffusion coefficients than those predicted

by the model were shown for DAV values lower than 0.1 independently of the chain length. This critical value is related to the loss of connectivity

of the holes of the system and the consequent diminution of the diffusion of the system. The influence of the chain length on this behaviour has

been established, showing that there is a linear relationship between the g parameter (the proportionality constant between D and the squared

DAV) and the reciprocal of the chain length.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The relationship between diffusion coefficient and free

volume is well known in polymer physics and has been

explained by the classical free volume theories [1–4].

According to these theories (and also to the experimental

results), the viscosity of the liquid or the diffusion coefficient

depends almost exclusively on free volume. The well known

Doolitle equation is representative of this dependence

hZA exp B
vKvf

vf

� �
(1)

where h is the viscosity, v volume, vf is free volume and A and

B are constants. This is a key feature in polymer physics,

related to the segmental dynamics and its dependence with

temperature at temperatures above the glass transition and with

thermal history at temperatures in the range or below the glass

transition.
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Computer simulation is a very attractive tool in the study of

segmental mobility and the glass transition process in

polymeric materials. Monte Carlo methods are commonly

employed to study glass transition and the bond fluctuation

model is one of the most employed models [5–8], due to the

fact that it offers a good representation of polymeric materials

in spite of being a coarse graining model. Bond Fluctuation

Model has shown a good performance in representing

polymeric materials and their dynamics, so it can be employed

to determine the effect of chain length in the behaviour of the

system. The influence of the chain length in the glass transition

was studied for the bond fluctuation model by Lobe et al. [9]

showing that glass transition temperature increases with chain

length, as could be expected.

The definition of free volume in a lattice is not a simple task.

Recently Dawson has proposed the concept of Dynamically

Accessible Volume (DAV) in order to introduce a parameter to

characterize the glass transition [10–12]. This concept

distinguishes between two kinds of empty cells. The empty

cells that can be occupied in one Monte Carlo Step according to

the rules of the model are called holes, meanwhile the rest of

the empty cells are called vacancies. In order to obtain a

normalized value, the number of holes is divided by the total

number of cells of the simulation box, so DAV can vary
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between 0 and 1. The mathematical definition of DAV can be

expressed in the form

DAVZ
1

L3

XL3

jZ1

min 1;
Xnn

iZ1

dij

 ! !
(2)

where L is the box simulation size, nn is the number of nearest

neighbors of a cell and dij is a function defined as 1 when a

monomeric jump from the cell i to the cell j is allowed and 0 in

any other case.

The Dynamically Accessible Volume has been used by our

group, in the framework of Bond Fluctuation Model, to study

the response of polymeric systems to different thermal histories

[13], and the definition of DAV was extended to thermal

systems [14].

According to the definition of DAV, only holes are

considered to contribute to the diffusion of the system. It has

been proved for the Kob–Andersen [15] and Biroli–Mezard

[16] models that the relationship between diffusion coefficient

and DAV fits to the law [10–12,17]

D Zgjnj2 (3)

where D is the diffusion coefficient, n is DAV and g is a non-

universal factor that depends on the model. Some models like

Kob–Andersen [15] show a deviation from the quadratic

behaviour for low values of DAV, but this deviation can be

corrected if only connected holes are taken into account [17].

That is, isolated holes are not considered to contribute to the

diffusion of the system and then disregarded.

The aim of this work is to study the relationship between

diffusion coefficient and the dynamically accessible volume of

the system using Bond Fluctuation Model under athermal

conditions. The system under consideration consists of

polymeric chains of varying length and the results will be

compared to some other models that have been tested before

for simple beads [10,11]. The introduction of geometric

restrictions to polymer segments jumps allows simulating

systems with varying mobility and, as a consequence varying

dynamic accessibility of the empty sites. This is, to our

knowledge, the first time that geometric restrictions to motion

are introduced in Bond Fluctuation Model.
Fig. 1. Schema showing the influence cells for the 2D bond fluctuation model

(emphasized) in a typical movement. The distance of influence cells to the

molecular group in movement must be one lattice unit at the beginning or at the

end of movement and never must exceed
ffiffiffi
2

p
. An extrapolation to the 3D model

gives 24 influence cells.
2. The dynamically accessible volume and geometric
restrictions to movement

In order to control the available volume for a given

configuration, some geometric restrictions to movements are

included in models like Kob–Andersen [15] and Biroli–Mezard

[16]. Geometric restriction in Kob–Andersen model consists of

including a new parameter c in such a way that a movement can

only be performed if c or less neighbouring cells are occupied

at the original position and the destination site of the

movement. In a cubic lattice six neighbours are possible, so c

can vary between 0 and 6. Biroli–Mezard method includes a

geometrical restriction ci allowing only configurations where

all particles of type i have only ci or less neighbours. So, DAV
depends on the configuration of the particles, their density, and

the chosen value for the geometric restriction.

These kinds of geometric restrictions have been employed

before by Jäckle in order to represent the lack of mobility that

all systems experience during the glass transition [18]. In these

models some influence cells are defined depending on the

topology of the lattice and a geometric parameter is defined in

order to evaluate if a movement can be performed or not. It is

note worthy that all these geometric restrictions have been

applied only to simple models where particles are represented

by beads, but they have never been applied to polymeric

chains.

In order to control the dynamically accessible volume of the

system we have included, in this work, geometric restrictions to

the bond fluctuation model. We define the influence cells for a

movement as the cells that are close to the molecular group,

which is moving. The criterion we have chosen is that the sum

of the distance of an influence cell to the molecular group at the

beginning and at the end of the movement must be equal or less

than ð1C
ffiffiffi
2

p
Þ lattice units. In other words, the distance from

the influence cell to the original position of the polymer

segment or to the destination site must be one lattice unit and

must not exceed
ffiffiffi
2

p
to any of them. This gives six influence

cells in the 2D model, which are just around the molecular

group in movement (Fig. 1). If we extrapolate this to the 3D

model we obtain 24 influence cells. So we define a parameter c

in such a way that a movement can only be performed if c or

more influence cells of a movement are empty. A value cZ0

represents the standard model with no geometric restriction,

while increasing c contributes to the geometric frustration that

leads to the glass transition in a similar way that the models

explained above.
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Fig. 3. Value for g parameter of Eq. (2) depending on inverse chain length.

Straight line represents the linear regression.
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Fig. 2. Dependence of the diffusion coefficient on the DAV for chains sized 1 (f

between 0.5 and 0.75) ($), 5 (f between 0.5 and 0.65) (:), 10 (f between 0.5

and 0.60) (B), 15 (f between 0.5 and 0.56) (A) and 20 (f between 0.5 and

0.55) (6). Parameter c is always between 0 and 18. The straight line with slope

2 is also shown (see text). The insert shows a log–log plot that illustrates the

dependence of the diffusion coefficient on the inverse chain length for a fixed

DAV value (0.15).
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3. Results and discussion

3.1. Method

The characteristics of Bond Fluctuation Model have been

described extensively in the literature [5–9,19–37]. All

simulations consisted of a 3D box (LZ40) with continuous

boundary conditions [5]. In order to obtain athermal

simulations, no Hamiltonian was employed, so movements

were governed only by kinetics criteria. That is, when a

movement was randomly chosen to be performed, three unique

conditions that must be satisfied to accept it are volume

exclusion, geometric restriction and bond length maximum.

Simulations begun with an initial period of 105 Monte Carlo

Steps, MCS, in order to equilibrate the sample. After this initial

period average values were calculated during 104 MCS. All

calculations showed in this work were averaged from 20

independent simulations, in order to obtain values not

conditioned by initial configurations. Tested size chains were

NZ1 (monomer), 5, 10, 15 and 20.

The Dynamically Accessible Volume was varied by means

of density f (fraction of occupied lattice sites) and geometric

restriction parameter c. Combination of both parameters led to

a concrete value for DAV in every simulation. The maximum

density available in the model was limited, in the case of the

longest polymer chains, because of the difficulty to find the

consecutive empty space necessary to allocate every new chain

in the initial configuration.

When chains sized 20 and 15 were simulated, maximal

density was fZ0.55 and 0.56, respectively. Lower size chains

allowed higher densities. On the other hand, for each density,

simulations were conducted with different values of parameter

c, between 0 and 18 (maximal possible value was 24), in order

to vary the DAV. Greater values for c led to a frozen system in

its initial configuration and no diffusion was observed, so this

was the reasonable range for the geometric restriction.

The evolution of the system during simulation was observed

averaging the DAV, and calculating at the same time the

diffusion coefficient [5,6,8,19]

D Z lim
t/N

g3ðtÞ

6t
(4)

where g3(t) is the correlation time function of the centre of

mass of the polymer chains [5,6,8,19]:

g3ðtÞZ ½ðrCMðtÞKðrCMð0Þ�
2

� �
(5)

In order to control the dependence of the spatial distribution

of polymer segments on DAV, the spatial pair correlation

function was calculated too [38]

gðrÞZ
2L3HðrÞ

ðNPÞ2hðrÞ
(6)

where H(r) represents the histogram that counts the incidences

for a given distance r in the system, h(r) represents the number

of possible r-vectors for this given distance, NP is the number
of monomers or molecular groups in the system and L is the

size of the simulation box expressed in lattice units.
3.2. Influence of chain length on the diffusion coefficient

The calculation of the diffusion coefficient depending on

DAV for bond fluctuation model (Fig. 2) showed a clear

influence of the chain length in the diffusion. Monomers (chain

length one) showed a greater diffusion for the same values of

DAV. As chain size increased, the expected linear relationship

between the diffusion coefficient and 1/N was found.

In the double logarithmic plot of Fig. 2, the behaviour

described by Eq. (3) corresponds to the straight line with slope

2 that approaches the diffusion coefficient curve for high DAV

values for any chain length. Fit of Eq. (3) to the diffusion

coefficient corresponding to DAV above around 0.1 allows to

determine the N dependence of the parameter g. Obviously the

dependence of g with the chain length (see Fig. 3) is similar to

that of the diffusion coefficient at a fixed value of DAV, shown

in the insert of Fig. 2. The molecular weight dependence of the

variables related to free volume, such as viscosity, self

diffusion coefficient, the glass transition temperature or the

internal friction, has been explained in terms of free volume by

the additional free volume corresponding to the chain ends of
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the polymer chain. This contribution being proportional to the

reciprocal molecular weight [4]. As shown in Fig. 3 the model

simulation reproduce the expected linear dependence of g with

the reciprocal chain length (1/N). The linear dependence on the

reciprocal chain length has been observed for the glass

transition temperature in the Bond Fluctuation Model [9].

These results illustrate that g factor is not only characteristic of

the simulation model [17], but also this factor depends on chain

length, showing the importance of the application of the

concept of dynamically accessible volume to polymeric

materials. By the other side, this behaviour shows the

importance of including a minimal chain length in Bond

Fluctuation Model in order to obtain the behaviour of a

polymeric material.

These results indicate that chain length diminishes the

diffusion coefficient of the chains as could be expected of the

previous results that showed the dependence of the glass

transition temperature on the size of the chains, but the

agreement with the quadratic law was observed in all cases for

high DAV values, and the non-quadratic behaviour was

observed too, as in Kob–Andersen model [17].

3.3. The loss of the quadratic relationship between DAV

and diffusion coefficient

The general trend of the log D vs log DAV plot can be

observed in a normalized diagram in which log D/g is

represented against log DAV [12,17], as shown in Fig. 4. The

values of g used in this calculation were those shown in Fig. 3.

We can observe that the curves corresponding to the different

chain lengths overlap at high DAV values with the slope 2, i.e.

with the quadratic dependence of D with DAV.

When DAV is approximately lower than 0.1, all the curves

loss the quadratic relationship showing a great decrease in

diffusion tendency. This loss is assumed to be caused by the

holes, which are isolated in some extent and do not contribute

to the diffusion of particles [17]. We can observe that the

change of behaviour takes place in the same DAV interval

independently of chain length and the critical value of DAV is

similar to that observed in literature [17]. Furthermore,

previous simulations performed by our group with the bond
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Fig. 4. Values of diffusion coefficient normalized by g depending on DAV for

chains sized 1($), 5(:), 10(B), 15(A) and 20(6). The g values were taken

from Fig. 3. Straight line represents the quadratic law.
fluctuation model in thermal systems with the thermal

definition of DAV showed that, on cooling from an equilibrium

state, the state of the systems separated from the equilibrium

line, beginning the glass transition, when DAV was around

0.1 [14].

All these results suggest the existence of a transition in the

dynamics of the amorphous material that takes place when the

dynamically accessible volume decreases below a certain

critical value. Above this value we can observe a liquid in

equilibrium where the diffusion coefficient depends on the

square of DAV. When the DAV of the system diminishes

below the critical value, the diffusion becomes slower due to

the lack of enough interconnected holes to allow the diffusion

of chain segments. In this work, this behaviour has been

observed for the bond fluctuation model in athermal

simulations, but a coherent behaviour with this interpretation

can be observed with different models [17] and with thermal

simulations of bond fluctuation model (employing the thermal

definition for DAV) [14]. More work must be tackled in future

in order to determine if this critical value, which is around 0.1,

appears in some other models.
3.4. Comparison of structures for different configurations

Finally we employed the pair correlation function in order to

observe the spatial distribution of the systems. Fig. 5 compares

the pair correlation function (Eq. (6)) calculated for the system

formed by polymer chains with NZ5 in situations with

different dynamically accessible volume. The graph shows no

indication of long-range order in the occupied lattice cells apart

from the characteristic peak at rZ2 induced by the lattice.

What is more significant is the fact that the structure is nearly

identical for DAV values above and below 0.1. Pair correlation

function was calculated for all the other chains size and all of

them offered the same amorphous structure independently of

the DAV of the system. Even in the case of the system

consisting of monomers (NZ1) (Fig. 6), in which the peaks in

g(r) are sharper, no significant differences were found

in situations with DAV lower than the critical value with

respect to the equilibrium liquid corresponding to high free
0
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Fig. 5. Pair correlation function of systems formed by chains sized 5 for

different values of DAV: 0.21 (fZ0.5; cZ12)($), 0.12 (fZ0.52; cZ15) (&),

0.09 (fZ0.53; cZ16) (6) and 0.04 (fZ0.55; cZ18) (C). Lines are

employed only as a guideline for the eye.
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Fig. 6. Pair correlation function for monomeric systems with DAV 0.17

(fZ0.5; cZ17) ($), 0.10 (fZ0.7; cZ12) (&), 0.07 (fZ0.7; cZ13) (6) and

0.03 (fZ0.65; cZ17) (C). Lines are employed only as a guideline for the eye.
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volume. The conclusion is that the system can be called

amorphous in all cases and no additional molecular order is

produced by the decrease of dynamically accessible volume

even to very small values.
4. Conclusions

In this work, we have verified that the dynamically

accessible volume follows in the Bond Fluctuation Model the

general behaviour that has been observed for some other

models. The quadratic law between DAV and diffusion

coefficient has been confirmed for high values of DAV, and

the loss of the quadratic relationship for low DAV values has

been observed too. Furthermore, the influence of the chain

length in this behaviour has been established, showing that

there is a linear relationship between g parameter and the

reciprocal of the chain length.

The loss of the quadratic relationship has been associated to

a critical value of dynamically accessible volume that is

independent of the chain size. This critical value is associated

to the loss of connectivity of the holes of the system and the

consequent diminution of the diffusion of the system. This fact

suggests that more work must be done in order to study the

connectivity of the holes and determine the critical value and

its possible universality.
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